Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1127). Services for accessing these data are described at the back of the journal.

References

Abrahamsson, S., Dahlén, B., Löfgren, H. \& Pascher, I. (1978). Prog. Chem. Fats Lipids, 16, 125-143.
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435436.

Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., GarciaGranda, S., Gould, R. O., Smits, J. M. M. \& Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
Hybl, A. \& Dorset, D. (1971). Acta Cryst. B27, 977-986.
Koenig, A. E. (19I4). J. Am. Chem. Soc. 36, 951-961.
Larsson, K. (1963). Acta Cryst. 16, 741-748.
Larsson, K. (1994). In Lipids-Molecular Organization, Physical Functions and Technical Applications. Dundee: The Oily Press.
Lawrence, A. S. C. (1939). Trans. Faraday Soc. 34, 660-677.
Lomer, T. R. \& Perera, K. (1974a). Acta Cryst. B30, 2912-2913.
Lomer, T. R. \& Perera, K. (1974b). Acta Cryst. B30, 2913-2915.
Molecular Structure Corporation (1992a). MSC/AFC Diffractometer Control Software. Version 4.3.0. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1992b). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Pascher, I., Sundell, S., Eibl, H. \& Harlos, K. (1986). Chem. Phys. Lipids, 39, 53-64.
Stephens, J. F. \& Tuck-Lee, C. (1969). J. Appl. Cryst. 2, 1-10.

Acta Cryst. (1997). C53, 843-845

cyclo-Tetrakis (μ-oxo)tetrakis[iodo $\left(\eta^{5}\right.$ methylcyclopentadienyl)titanium(IV)]

Carsten O. Kienitz, Carsten Thöne and Peter G. Jones*

Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany. E-mail: jones@xray36.anchem.nat. tu-bs.de
(Received 13 May 1996; accepted 6 June 1996)

Abstract

The title compound, $\left[\mathrm{Ti}_{4} \mathrm{I}_{4} \mathrm{O}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{7}\right)_{4}\right]$, displays the same geometric features as the analogous chloro complex; the central eight-membered (Ti-O) 4 ring deviates appreciably from planarity. The cyclopentadienyl and iodo ligands lie alternately above and below the ring. Approximate twofold symmetry is observed. The Ti-I and $\mathrm{Ti}-\mathrm{O}$ bond lengths lie in the ranges 2.657 (4)2.673 (4) and $1.763(15)-1.845$ (15) \AA, respectively.

Comment

In the following discussion some comparable values for the known chloro(methylcyclopentadienyl) complex $\left[\left(\mathrm{MeC}_{5} \mathrm{H}_{4}\right) \mathrm{TiClO}_{4}\right.$ (Petersen, 1980) are given in square brackets where applicable.

The 'backbone' of the title compound, (I) (Fig. 1), is formed by an eight-membered ring consisting of four O and four Ti atoms. The iodo and methylcyclopentadienyl ligands lie alternately above and below this ring.

In contrast to the corresponding chloro complex (Petersen, 1980), the iodo complex possesses no crystallographic C_{2} symmetry along either of the vectors $\mathrm{O} 2 \cdots \mathrm{O} 4$ or $\mathrm{O} 1 \cdots \mathrm{O} 3$, or perpendicular to the ring. Nevertheless, there is an approximate twofold axis along the vector O2 \cdots O4. If the methyl groups are ignored (C26 and C36 point into the ring, and C16 and C46 point away from it), the approximate symmetry increases to 222.

In both complexes, the eight-membered ring deviates appreciably [mean deviation in (I) is $0.200 \AA$] from planarity. It is folded in (I) along the Ti1 $\cdots \mathrm{Ti} 3$ and Ti2 $\ldots \mathrm{Ti} 4$ axes giving two pairs of planes, i. e. Ti1$\mathrm{O} 1-\mathrm{Ti} 2-\mathrm{O} 2-\mathrm{Ti} 3$ (mean deviation $0.065 \AA$) and Ti1-

Fig. 1. The molecule of the title compound in the crystal. Radii are arbitrary. Displacement ellipsoids are plotted at the 50% probability level.
$\mathrm{O} 4-\mathrm{Ti} 4-\mathrm{O} 3-\mathrm{Ti} 3$ (mean deviation $0.018 \AA$), with an interplanar angle of $24.16(10)^{\circ}$, and $\mathrm{Ti} 2-\mathrm{O} 2-\mathrm{Ti} 3-\mathrm{O} 3-$ Ti 4 (mean deviation $0.053 \AA$) and $\mathrm{Ti} 2-\mathrm{O} 1-\mathrm{Ti} 1-\mathrm{O} 4-\mathrm{Ti} 4$ (mean deviation $0.029 \AA$), with an interplanar angle of $24.38(10)^{\circ}$. The corresponding interplanar angle in the chloro complex (Petersen, 1980) is 26°. The transannular $\mathrm{Ti} \cdots \mathrm{Ti}$ distances are $\mathrm{Til} \cdots \mathrm{Ti} 34.984$ (5) and $\mathrm{Ti} 2 \ldots \mathrm{Ti} 44.991$ (5) $\AA[4.964 \AA$].

The $\mathrm{Ti}-\mathrm{O}-\mathrm{Ti}$ angles lie in the range 155.9 (9) to $171.0(9)^{\circ}$ [157.2(2) to $169.1(2)^{\circ}$] with similar values for opposite O atoms. Angles of $\mathrm{ca} 170^{\circ}$ have also been observed in many other oxo-bridged titanium complexes (Rausch, Sikora, Hrncir, Hunter \& Atwood, 1980; Thewalt \& Klein, 1981; Shur et al., 1983; Honold et al., 1986).

The coordination geometry at the Ti atoms is distorted tetrahedral (regarding the centres of gravity $X 1 A-X 1 D$ of the methylcyclopentadienyl rings $\mathrm{C} 11-\mathrm{C} 15$, etc. as monodentate ligands), with angles ranging from 99.5 (5) to $119.1^{\circ}\left[101.6(1)\right.$ to $\left.118.9(3)^{\circ}\right]$. The $\mathrm{O}-\mathrm{Ti}-\mathrm{O}$ angles lie in the range from 104.7 (6) to $105.2(6)^{\circ}$.

The $\mathrm{Ti}-\mathrm{O}$ bond lengths, 1.763 (15) to 1.845 (15) \AA, [1.792 (3) to 1.801 (3) \AA], lie in the expected range, which is also found in many other oxo-bridged titanium complexes (Skapski \& Troughton, 1970; Rausch et al., 1980; Thewalt \& Klein, 1981; Shur et al., 1983; Honold et al., 1986; Thewalt \& Schomburg, 1977; Thewalt \& Schleussner, 1978; Thewalt \& Kebbel, 1978; Le Page, McCowan, Hunter \& Heyding, 1980; Klein, Thewalt, Döppert \& Sanchez-Delgado, 1982; Bottomley, Egharevba, Lin \& White, 1985; Iiskola et al., 1993).

The distances between the Ti atoms and the centres X of the MeCp rings lie in the range from 2.018 to $2.041 \AA[2.034$ to $2.040 \AA$], which is typical for oxo-bridged titanium complexes with only one cyclopentadienyl ligand, as the following values indicate: $2.010 \AA$ in $\left[\mathrm{CpTiCl}_{2}\right]_{2} \mathrm{O}$ (Thewalt \& Schomburg, 1977), 2.02 and $2.04 \AA$ in $[\mathrm{CpTiClO}]_{4}$ (Skapski \& Troughton, 1970). This is somewhat shorter than the distance in comparable complexes with two cyclopentadienyl ligands, with an average value of 2.078 A (Rausch et al., 1980; Thewalt \& Klein, 1981; Shur et al., 1983; Honold et al., 1986; Thewalt \& Schleussner, 1978; Thewalt \& Kebbel, 1978; Le Page et al., 1980; Klein et al., 1982). The vertical distances of the Ti atoms to the planes of the MeCp rings are $2.029(10), 2.029(10), 2.018(10)$ and 2.040 (10) \AA for $\mathrm{Ti} 1-\mathrm{Ti} 4$, respectively.

Reported values for $\mathrm{Ti}-\mathrm{I}$ bond lengths are scarce, but the values from 2.657 (4) to 2.673 (4) \AA in (I) are comparable with those in [$\left.\mathrm{Ti}(\mathrm{OAr})_{3} \mathrm{I}\right](\mathrm{OAr}$ is $2,6-\mathrm{di}-$ tert-butylphenol) with 2.634 (8) \AA (Latesky, Keddington, McMullen, Rothwell \& Huffman, 1985).

Experimental

The title compound was obtained unexpectedly from the following reaction sequence: a solution of $\left[(\mathrm{MeCp})_{2} \mathrm{TiCl}_{2}\right]$ in

THF was treated sequentially with lithium triethylborohydride, powdered grey selenium and methyl iodide. Removal of the solvent, extraction of the resulting black slurry with dichloromethane, filtration, renewed removal of the solvent and addition of acetone gave the product as a yellow powder. Crystals were grown by evaporation from dichloromethane.

Crystal data

[$\mathrm{Ti}_{4} \mathrm{~L}_{4} \mathrm{O}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{7}\right)_{4}$]
$M_{r}=1079.66$
Orthorhombic
Pna2 ${ }_{1}$
$a=19.239$ (3) \AA
$b=10.500(2) \AA$
$c=15.696(2) \AA$
$V=3170.7(9) \AA^{3}$
$Z=4$
$D_{x}=2.262 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Stoe Stadi-4 diffractometer
$\omega-\theta$ scans
Absorption correction:
ΔF (SHELXA; Sheldrick, 1993a)
$T_{\text {min }}=0.447, T_{\text {max }}=0.699$
5730 measured reflections
5449 independent reflections
3776 reflections with
$I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0766$
$w R\left(F^{2}\right)=0.1860$
$S=1.018$
5449 reflections
330 parameters
H atoms: methyl H atoms rigid, others riding
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0637 P)^{2}\right.$
$+52.2807 \mathrm{P}]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 54
reflections
$\theta=10.0-11.5^{\circ}$
$\mu=4.893 \mathrm{~mm}^{-1}$
$T=143$ (2) K

Plate

$0.50 \times 0.25 \times 0.05 \mathrm{~mm}$ Yellow
$R_{\text {int }}=0.0616$
$\theta_{\text {max }}=25.03^{\circ}$
$h=0 \rightarrow 22$
$k=-12 \rightarrow 1$
$l=-18 \rightarrow 18$
3 standard reflections
frequency: 60 min
intensity decay: 2.2%

Table 1. Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$

I1-Til	2.673 (4)	Ti3-03	1.808 (13)
Til-O4	1.763 (15)	O3-Ti4	1.801 (14)
Til-OI	1.807 (15)	Ti4-04	1.845 (15)
$\mathrm{O} 1-\mathrm{Ti} 2$	1.820 (14)	Ti4-I4	2.670 (4)
Ti2-02	1.826 (15)	$X 1 A-\mathrm{Ti} 1$	2.031
Ti2-I2	2.669 (4)	$X 1 B-\mathrm{Ti} 2$	2.031
I3-Ti3	2.657 (4)	$X 1 C-\mathrm{Ti} 3$	2.018
Ti3-02	1.795 (15)	$X 1 D-\mathrm{Ti} 4$	2.041
O4-Til-O1	105.1 (6)	Ti4-O3-Ti3	156.3 (8)
O4-Til-I1	99.5 (5)	Til-O4-Ti4	171.0 (9)
$\mathrm{Ol}-\mathrm{Ti}-\mathrm{ll}$	104.2 (5)	$X 1 A-\mathrm{Til}-\mathrm{Ol}$	114.3
$\mathrm{Ol}-\mathrm{Ti} 2-\mathrm{O} 2$	104.7 (6)	$X 1 A-\mathrm{Til}-\mathrm{O} 4$	118.6
$\mathrm{Ol}-\mathrm{Ti} 2-\mathrm{I} 2$	103.7 (5)	$X 1 A-$ Til-ll	113.3
$\mathrm{O} 2-\mathrm{Ti} 2-\mathrm{I} 2$	100.5 (4)	$X 1 B-\mathrm{Ti} 2-\mathrm{Ol}$	116.8
$\mathrm{O} 2-\mathrm{Ti} 3-\mathrm{O} 3$	105.2 (6)	$X 1 B-\mathrm{Ti} 2-\mathrm{O} 2$	114.3
O2-Ti3-13	101.9 (5)	$X 1 B-\mathrm{Ti} 2-\mathrm{I} 2$	115.0
O3-Ti3-13	103.6 (5)	$X 1 C-\mathrm{Ti} 3-\mathrm{O} 2$	114.3
$\mathrm{O} 3-\mathrm{Ti} 4-\mathrm{O} 4$	104.8 (6)	$X 1 C-\mathrm{Ti} 3-\mathrm{O} 3$	115.0
O3-Ti4-I4	102.1 (5)	$X 1 C-\mathrm{Ti} 3-\mathrm{I} 3$	115.4

$(\Delta / \sigma)_{\text {max }}=-0.002$
$\Delta \rho_{\text {max }}=1.216 \mathrm{e} \AA^{-3} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.071 \mathrm{e} \AA^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C) Absolute configuration: Flack (1983)
Flack parameter $=0.65(9)$

$\mathrm{O} 4-\mathrm{Ti} 4-\mathrm{I4} 4$	$99.7(5)$	$X 1 D-\mathrm{Ti} 4-\mathrm{O} 3$	114.6
$\mathrm{Ti1}-\mathrm{O} 1-\mathrm{Ti} 2$	$155.9(9)$	$X 1 D-\mathrm{Ti4}-\mathrm{O} 4$	119.1
$\mathrm{Ti} 3-\mathrm{O} 2-\mathrm{Ti} 2$	$168.2(7)$	$X 1 D-\mathrm{Ti4}-\mathrm{I} 4$	114.2

An attempt was made to perform an absorption correction based on ψ scans, but the weak diffraction caused too few suitable reflections to be available. Accordingly, recourse to a ΔF correction had to be made. The transmission factors are somewhat higher than expected. The number of leastsquares parameters was artificially increased by 18 to allow for the extra (hidden) parameters introduced. The structure was refined as a racemic twin with components $0.67,0.33$ (11); the origin was fixed by the method of Flack \& Schwarzenbach (1988). The high R values are associated with broad reflection profiles, weak diffraction from a thin plate and (probably) residual absorption errors. To improve the refinement stability, a system of restraints (695 in all) to light-atom temperaturefactor components and local Cp-ring symmetry was employed.

Data collection: DIF4 (Stoe \& Cie. 1992a). Cell refinement: DIF4. Data reduction: REDU4 (Stoe \& Cie, 1992b). Program(s) used to solve structure: $S H E L X S 86$ (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993b). Molecular graphics: XP (Siemens, 1994). Software used to prepare material for publication: $S H E L X L 93$.

The authors thank the Fonds der Chemischen Industrie for financial support and Mr A. Weinkauf for technical assistance.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1201). Services for accessing these data are described at the back of the journal.

References

Bottomley, F., Egharevba, G. O., Lin, I. J. B. \& White, P. S. (1985). Organometallics, 4, 550-553.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Flack, H. D. \& Schwarzenbach, D. (1988). Acta Cryst. A44, 499-506. Honold, B., Thewalt, U., Herberhold, M., Alt, H. G., Kool, L. B. \& Rausch, M. D. (1986). J. Organomet. Chem. 314, 105-111.
Iiskola, E., Pelkonen, A., Kakkonen, H. J., Ahlgren, M., Pakkanen, T. A. \& Pursiainen, J. (1993). Acta Cryst. C49, 1607-1609.

Klein, H.-P., Thewalt, U., Döppert, K. \& Sanchez-Delgado, R. (1982). J. Organomet. Chem. 236, 189-195.

Latesky, S. L., Keddington, J., McMullen, A. K., Rothwell, I. P. \& Huffman, J. C. (1985). Inorg. Chem. 24, 995-1001.
Le Page, Y., McCowan, J. D., Hunter, K. B. \& Heyding, R. D. (1980). J. Organomet. Chem. 193, 201-207.

Petersen, J. L. (1980). Inorg. Chem. 19, 181-185.
Rausch, M. D., Sikora, D. J., Hrncir, D. C., Hunter, W. E. \& Atwood, J. L. (1980). Inorg. Chem. 19, 3817-3821.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993a). SHELXA93. Empirical Absorption Correction Program. University of Göttingen, Germany.
Sheldrick, G. M. (1993b). SHELXL93. Program for the Refinement of Crystal Struclures. University of Göttingen, Germany.
Shur, V. B., Bernadyuk, S. Z., Burlakov, V. V., Andrianov, V. G., Yanovsky, A. I., Struchkov, Yu. T. \& Vol'pin, M. E. (1983). J. Organomet. Chem. 243, 157-163.
Siemens (1994). XP. Molecular Graphics Program. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Skapski, A. C. \& Troughton, P. G. H. (1970). Acta Cryst. B26, 716722.

Stoe \& Cie (1992a). DIF4. Diffractometer Control Program. Version 7.09. Stoe \& Cie, Darmstadt, Germany.

Stoe \& Cie (1992b). REDU4. Data Reduction Program. Version 7.03. Stoe \& Cie, Darmstadt, Germany.
Thewalt, U. \& Kebbel, B. (1978). J. Organomet. Chem. 150, 59-66. Thewalt, U. \& Klein, H.-P. (1981). Z. Anorg. Allg. Chem. 479, 113118.

Thewalt, U. \& Schleussner, G. (1978). Angew. Chem. 90, 559-560.
Thewalt, U. \& Schomburg, D. (1977). J. Organomet. Chem. 127, 169-174.

Acta Cryst. (1997). C53, 845-848

Polysulfonylamines. LXXXIII. Heptaaquacalcium 1,2-Benzenedisulfonimide \dagger

Oliver Moers, Armand Blaschette and Peter G. Jones*

Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany. E-mail: jones@xray36. anchem.nat.tu-bs.de
(Received 13 December 1996; accepted 3 February 1997)

Abstract

In heptaaquacalcium bis[1,3,2-benzodithiazole 1,1,3,3tetroxide $(1-)]$, $\left[\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\right]\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{4} \mathrm{~S}_{2}\right)_{2}$, the calcium ion is surrounded by the O atoms of seven water molecules in a distorted pentagonal bipyramidal geometry. The structure displays layers of anions, with the calcium cations and water molecules between these layers. The layers are held together by an extensive network of hydrogen bonds involving the water molecules and the $\left(\mathrm{SO}_{2}\right)_{2} \mathrm{~N}^{-}$subunits of the anions.

Comment

Calcium ions in crystal structures generally bind to O atoms in ligands and their preferred coordination numbers range from 6 to 8 (Katz, Glusker, Beebe \& Bock, 1996). However, in hydrated compounds containing six or more water molecules per calcium ion, exclusive hydration of the metal to form $\left[\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{O}\right)_{n}\right]^{2+}$ ($n \geq 6$) is rare; in most of these compounds, the coordination polyhedra involve ligands other than water molecules. It was shown by $a b$ initio molecular orbital calculations in vacuo that the net energy penalty for changing the number of water molecules in the first coordination shell of Ca^{2+} between 6 and 8 is extremely small (Katz et al., 1996).

The heptahydrated calcium ion has been observed in $\mathrm{CaCr}_{2} \mathrm{O}_{7} .2\left[\left(\mathrm{CH}_{2}\right)_{6} \mathrm{~N}_{4}\right] .7 \mathrm{H}_{2} \mathrm{O}$ (Dahan, 1975),

[^0]
[^0]: \dagger Part LXXXII: Dalluhn, Henschel, Blaschette \& Jones (1997).

